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Abstract

Eigenvalue problems are rampant in machine
learning and statistics and appear in the con-
text of classification, dimensionality reduc-
tion, etc. In this paper, we consider a car-
dinality constrained variational formulation
of generalized eigenvalue problem with sparse
principal component analysis (PCA) as a spe-
cial case. Using ℓ1-norm approximation to
the cardinality constraint, previous methods
have proposed both convex and non-convex
solutions to the sparse PCA problem. In
contrast, we propose a tighter approximation
that is related to the negative log-likelihood
of a Student’s t-distribution. The problem
is then framed as a d.c. (difference of con-
vex functions) program and is solved as a
sequence of locally convex programs. We
show that the proposed method not only
explains more variance with sparse loadings
on the principal directions but also has bet-
ter scalability compared to other methods.
We demonstrate these results on a collection
of datasets of varying dimensionality, two
of which are high-dimensional gene datasets
where the goal is to find few relevant genes
that explain as much variance as possible.

1. Introduction

Principal component analysis (PCA), a popular tool
for data analysis, data compression and visualization;
its two-view counterpart, canonical correlation analy-
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sis (CCA) and Fisher discriminant analysis (FDA) can
be seen as specific instances of a generalized maximum
eigenvalue problem. Despite the simplicity and popu-
larity of these methods, one key drawback is the lack of
sparseness in their solution. Sparse representations are
generally desirable as they aid human understanding,
reduce computational costs and promote better gener-
alization. For example, PCA and CCA, as dimension-
ality reduction tools, suffer from the disadvantage that
their solution vector is a linear combination of all input
variables, which often makes it difficult to interpret the
results. For better interpretability (e.g., with gene ex-
pression data, financial asset trading), one would be
interested to find few relevant features that explain as
much variance as possible. Similarly, in a classification
setting like FDA, feature selection aids generalization
performance by promoting sparse solutions.

Among the generalized eigenvalue problems, sparse
representations are well-studied for PCA. The earli-
est of attempts consisted of simple axis rotation and
component thresholding for subset selection (Cadima
& Jolliffe, 1995). Jolliffe et al. (2003) proposed SCoT-
LASS by enforcing a sparsity constraint on the prin-
cipal directions by bounding their ℓ1-norm, leading
to a non-convex procedure. Zou et al. (2004) pro-
posed SPCA, a ℓ1-penalized regression algorithm for
PCA using elastic-net, which is solved very efficiently
using least angle regression. Currently, this method
seems to be the only viable option for handling very
high-dimensional datasets (on the order of 10, 000).
Subsequently, d’Aspremont et al. (2005) proposed
DSPCA, a convex relaxed solution to sparse PCA lead-
ing to a semidefinite program (SDP) (Vandenberghe
& Boyd, 1996). Though this method shows compara-
ble performance to SPCA on a small-scale benchmark
dataset, it is not scalable to high-dimensional datasets,
even, possibly, with Nesterov’s first-order method. Re-
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cently, Moghaddam et al. (2007) proposed GSPCA,
a combinatorial optimization algorithm based on bi-
directional greedy search and has outperformed these
other algorithms. However, this method is also not
scalable to large covariance matrices.

In this paper, we propose a sparse generalized eigen-
value algorithm by approximating the cardinality of
the eigen solution as the negative log-likelihood of a
Student’s t-distribution. Weston et al. (2003) pro-
posed the above approximation for feature selection
in support vector machines. We show that this ap-
proximate problem can be framed as a d.c. (differ-
ence of convex functions) program and solved as a
sequence of quadratically constrained quadratic pro-
grams (QCQP) using the d.c. minimization algorithm
(DCA) of Tao and An (1998), which guarantees con-
vergence to a local optimum in finite time. On the
standard “pit props” benchmark dataset, known in
the statistics community for its lack of sparseness and
subsequent difficulty of interpretation, we show that
our proposed method (DC-PCA) performs better than
SPCA and DSPCA in terms of sparsity vs. explained
variance. We also demonstrate the positive results of
our method w.r.t. SPCA (DSPCA is not scalable) on
two high dimensional datasets where the goal is to find
relevant genes (as few as possible) while explaining the
maximum possible variance.

In summary, two important points addressed in this
paper are sparsity and scalability. Sparsity is im-
proved by using a better approximation to the cardi-
nality constraint. The simplicity of DCA leads to the
proposed algorithm (DC-PCA) which has better scal-
ability than SPCA and DSPCA. Therefore, we argue
that our method provides better scalability and spar-
sity vs. explained variance than SPCA and DSPCA.

2. Notation

In this paper, S
n = {Xn×n : X = XT }, 1 = (1, n. . ., 1)T

and 0 = (0, n. . ., 0)T . For X ∈ S
n, X ≻ 0 (resp. X � 0)

means that X is positive definite (resp. semidefinite).
For x = (x1, . . . , xn)T ∈ R

n and y = (y1, . . . , yn)T ∈
R

n, x � y ⇒ xi ≤ yi, ∀i. ||x||0 denotes the number
of non-zero elements of x. I denotes an n× n identity
matrix. D(x) represents a diagonal matrix with x as
its principal diagonal. tr(X) represents the trace of X.

3. Generalized Eigenvalue Problems

The variational formulation for the generalized eigen-
value problem is given by

max
x

{xT Ax : xT Bx = 1}, (1)

where x ∈ R
n, A ∈ S

n and B ≻ 0. Various algorithms
in machine learning and statistics are specific instan-
tiations of Eq. (1). In the binary classification setting,
FDA finds a 1-D subspace onto which the projections
of data lead to a maximal separation of classes. Its
variational formulation is the same as Eq. (1) with
A = Sb and B = Sw where Sb = (µ1 −µ2)(µ1 −µ2)

T

is the between-cluster variance and Sw = Σ1 + Σ2 is
the within-cluster variance. µi and Σi are the mean
vector and covariance matrix of class i respectively.

In the unsupervised setting, PCA and CCA are widely
used as dimensionality reduction tools. Replacing B

by I in Eq. (1) leads to the variational formulation of
PCA, which identifies the direction of maximal vari-
ance in the data, with A being the covariance matrix.
While PCA deals with only one data space X , CCA
proposes a way for dimensionality reduction by tak-
ing into account relations between samples from two
spaces X and Y. The assumption is that the data
points coming from these two spaces contain some joint
information that is reflected in correlations between
them. Directions along which this correlation is high
are thus assumed to be relevant directions when these
relations are to be captured. The variational formu-
lation for CCA is given by maxwx, wy

{wT
x Sxywy :

wT
x Sxxwx = 1 ,wT

y Syywy = 1} which can be writ-

ten in the form of Eq. (1) with A =

(

0 Sxy

Syx 0

)

,

B =

(

Sxx 0
0 Syy

)

and x =

(

wx

wy

)

where S =
(

Sxx Sxy

Syx Syy

)

is the covariance matrix between sam-

ples from X and Y.

4. Sparse Generalized Eigenvalue

Formulation

The variational formulation for the sparse generalized
eigenvalue problem is given by

max
x

{xT Ax : xT Bx = 1, ||x||0 ≤ k}, (2)

where 1 ≤ k ≤ n. Eq. (2) is non-convex, NP-hard
and therefore intractable.1 In addition, the cardinality
constraint aggravates the problem as it cannot be han-

1The generalized eigenvalue problem in Eq. (1) is not
a convex program for A ∈ S

n \ {A : A � 0}. In addi-
tion, the constraint set is also non-convex. However, effi-
cient algorithms exist which can find a global optimum in
polynomial time. It should be noted that any additional
constraint to Eq. (1) or replacement of xT Bx = 1 by any
other non-quadratic convex/non-convex constraint makes
the problem NP-hard. This is true even when A � 0 as it
results in the maximization of a convex objective. In this
respect, the generalized eigenvalue problem is very special.
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dled directly (it is discontinuous and combinatorially
hard). To get a handle on the cardinality constraint,
usually the ℓ1-norm approximation is used. Though it
makes the constraint set convex, it does not simplify
the problem any further as the additional ℓ1 constraint
destroys the special nature of Eq. (1). This is the ap-
proximation used by SCoTLASS for B = I leading to
a locally convergent algorithm. A convex method can
be achieved by starting with this ℓ1-norm approxima-
tion, performing lifting (Lovász & Schrijver, 1991) of
Eq. (2), then relaxing the rank constraint that follows.
This leads to the following SDP,

max
X�0

{tr(AX) : tr(BX) = 1,1T |X|1 ≤ k tr(X)}, (3)

where |X|ij , |Xij |. With B = I, we obtain DSPCA
(d’Aspremont et al., 2005). Though DSPCA is a con-
vex method, it is computationally very intensive as
the general purpose interior-point methods scale as
O(n6 log(1/ǫ)), where ǫ is the required accuracy on
the optimal value. For large-scale problems, first-order
methods can be used which scale as O(n4

√
log n/ǫ).

Since the only convex approach possible is through
SDP relaxation which is prohibitively expensive for
large n, one should be content with either local meth-
ods or expensive mixed-integer programs.2 Another
method to solve the sparse maximum eigenvalue pro-
gram is by solving a sequence of sparse minimum
eigenvalue programs which are convex when A � 0,
B ≻ 0 and relaxing ||x||0 ≤ k by ||x||1 ≤ k. Clearly,
this brute force method is prohibited for large n.

The proposed method is motivated by the following
observations. First, since the ℓ1-norm relaxation does
not simplify the original problem, we can use a bet-
ter approximation to cardinality to improve sparsity.
Second, since the only way to obtain a convex approxi-
mation to this problem scales terribly in size, it is wise
to use a locally convergent algorithm with better scal-
ability. To this end, we consider a related problem of
Eq. (2) given by

max
x

{xT Ax − ρ ||x||0 : xT Bx ≤ 1}, (4)

where ρ > 0. Note that we replaced the quadratic
equality constraint with an inequality constraint. The
equality of Eq. (2) (with ||x||0 ≤ k absorbed into the
objective function) and Eq. (4) for B = I is discussed
in El Ghaoui, (2006, Theorem 1), which says that de-
pending on the value of ρ, both these programs either

2DSPCA provides a unique global optima, which is only
an approximation to the true solution. Ideally, the solution
that is obtained should be projected back onto the true
(unrelaxed) constraint set to achieve a feasible solution.
This is usually done by random projection.

have the same optimal solution or have trivial solu-
tions. In this paper, we consider Eq. (4) as the sparse
generalized eigenvalue problem. Since Eq. (4) is not
tractable because of ||x||0, we approximate ||x||0 by
∑n

i=1 log(ε+|xi|) as proposed by Weston et al. (2003),
leading to the following program,

φ(ρ) := max
xT Bx≤1

{xT Ax − ρ
n
∑

i=1

log(ε+ |xi|)}, (5)

where 0 ≤ ε ≪ 1 avoids problems when one of the
xi is zero. The following proposition shows that the
global maximizers of Eq. (4) and Eq. (5) have almost
the same cardinality.

Proposition 1. Let x̂ and x̌ be the maximizers of
Eq. (4) and Eq. (5) respectively. If x̌ is independent
of the choice of ε and δ ≤ |x̌i| < ∞ for some fixed
δ > 0, where i = {j : |x̌j | 6= 0, 1 ≤ j ≤ n}, then

||x̌||0 ≤ ||x̂||0 +O
(

1
log ε

)

.

Proof. The proof follows the method in Weston et al.
(2003). Since x̌ is the maximizer of Eq. (5), we have

x̌T Ax̌−ρ
n
∑

i=1

log(ε+ |x̌i|) ≥ x̂T Ax̂−ρ
n
∑

i=1

log(ε+ |x̂i|),

(6)
which is equivalent to

||x̂||0 − ||x̌||0 +
∑

{i : x̌i 6=0}

log(ε+ |x̌i|)
log ε

−
∑

{i : x̂i 6=0}

log(ε+ |x̂i|)
log ε

≥ x̌T Ax̌ − x̂T Ax̂

ρ log ε
. (7)

We see that
||x̌||0 ≤ ||x̂||0 + ψ(ε), (8)

where

ψ(ε) =
x̂T Ax̂ − x̌T Ax̌

ρ log ε
+

∑

{i : x̌i 6=0}

log(ε+ |x̌i|)
log ε

−
∑

{i : x̂i 6=0}

log(ε+ |x̂i|)
log ε

∼ O

(

1

log ε

)

.

The proposed approximation can be interpreted as
defining a limiting Student’s t-distribution prior
over x (leading to an improper prior) given by
p(x) ∝ ∏n

i=1
1

|xi|
and computing its negative log-

likelihood. Tipping (2001) showed that this choice of
prior leads to sparse representation and demonstrated
its validity for sparse kernel expansions in the Bayesian
framework. It can be shown that sparse FDA based on
Eq. (5) is very similar to the relevance vector machine
(RVM). From now on, we will assume that ε is equal
to the machine precision and in fact use ε = 0 while
solving the approximate problem.
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4.1. Solution by D.C. Programming

Consider Eq. (5) with ε = 0 which can be written as

max
x,y

{xT Ax − ρ

n
∑

i=1

log yi : (x,y) ∈ F}, (9)

where F = {(x,y) : xT Bx ≤ 1 ,−y � x � y}. This
can be written as

−φ(ρ) := min
x,y

IF (x,y) −
(

xT Ax − ρ

n
∑

i=1

log yi

)

,

(10)
where the convex function IF is called the indicator
function of the convex set, F given by

IF (x,y) =

{

0 (x,y) ∈ F

∞ (x,y) /∈ F .
(11)

From now onwards, we assume that A � 0. Based on
the discussion on d.c. programming in Appendix A,
it can be seen from Eq. (10) that g(x,y) = IF (x,y)
and h(x,y) = xT Ax − ρ

∑n

i=1 log yi, which are con-
vex in x and y. So, Eq. (10), which is an approx-
imation to Eq. (2), is a d.c. program. Using the
d.c. minimization algorithm (DCA) of Tao and An
(1998) (see Appendix A),3 Eq. (10) can be solved ef-
ficiently for a locally optimal solution. For the prob-
lem at hand, h is differentiable and combining the two
DCA steps (3 and 4 of Algorithm 2 in Appendix A)
for each l ∈ N, we get (xl+1,yl+1) ∈ ∂g∗(∇h(xl,yl)) =
arg maxx,y{(xT yT )∇h(xl,yl) − g(x,y)}. Therefore,
(xl+1,yl+1) ∈ arg max(x,y)∈F{(xT yT )∇h(xl,yl)}.
With ∇h(xl,yl) = 2Axl − ρ(1 • yl), where (a • b)i =
ai/bi, we get the convex program, (xl+1,yl+1) =
arg max(x,y)∈F{xT

l Ax − ρ
2 (1 • yl)

T y}. By change
of variables with x = xl ◦ x̄ and y = yl ◦ ȳ where
(a ◦ b)i = aibi, this reduces to

max
x̄,ȳ

xT
l AD(xl)x̄ − ρ

2
1T ȳ

s.t. x̄T D(xl)BD(xl)x̄ ≤ 1, −ȳ � x̄ � ȳ, (12)

with xl+1 = xl◦x̄∗ and yl+1 = yl◦ȳ∗ where (x̄∗, ȳ∗) is
the maximizer of Eq. (12). Removing ȳ from Eq. (12)
yields the sparse generalized eigenvalue program in Al-
gorithm 1, which is a sequence of QCQPs with a mul-
tiplicative update. The multiplicative nature of the
update makes the weighting for less relevant features
decay rapidly to zero and so at the termination, x̄∗ ∈
{0, 1}n provides the (locally) optimal sparsity pattern.

3The successive linear approximation (SLA) for concave
minimization (Mangasarian, 1997) and concave-convex
procedure (CCCP) (Yuille & Rangarajan., 2003) can be
seen as special cases of d.c. programming.

Algorithm 1 Sparse Generalized Eigenvalue Program

Require: A � 0, B ≻ 0 and ρ > 0
1: Choosex0 ∈ F arbitrarily
2: repeat

3:

x̄∗ = arg max
x̄

xT
l AD(xl)x̄ − ρ

2 ||x̄||1
s.t. x̄T D(xl)BD(xl)x̄ ≤ 1 (13)

4: xl+1 = xl ◦ x̄∗

5: until xl+1 = xl

6: return xl, x̄∗

Using x̄∗, the variational re-normalization (Moghad-
dam et al., 2007, §2, Proposition 2) can be applied
to xl by solving the cardinality unconstrained prob-
lem, φ̄(ρ) := maxx{xT D(x̄∗)AD(x̄∗)x : xT Bx = 1},
which guarantees that φ̄(ρ) ≥ φ(ρ) and ||x̄∗||0 = ||x̃||0
where x̃ is the maximizer of φ̄(ρ).

The following proposition shows that when ρ = 0, the
local optimal solution obtained by Algorithm 1 is the
global optimal solution and equals that of the gener-
alized eigenvalue problem of Eq. (1).

Proposition 2. Let ρ = 0, xl be the output of Algo-
rithm 1 and x̆ = arg maxx{xT Ax : xT Bx = 1}.
Then xT

l Axl = λmax(B−1A) and xl = x̆, where
λmax(B−1A) is the maximum eigenvalue of B−1A.

Proof. Solving the Lagrangian of Eq. (13) with ρ = 0

yields x̄∗ = D(xl)
−1B−1Axl/

√

xT
l AB−1Axl with

xl+1 = D(xl)x̄
∗. At the stationary point, xl+1 =

xl gives
(
√

xT
l AB−1Axl

)

xl = B−1Axl. Defining

µ =
√

xT
l AB−1Axl, we have µ =

√

µxT
l Axl ⇒

µ = xT
l Axl. Since xT

l Axl is the maximum value of
Algorithm 1 and B−1Axl = µxl, equivalently, they
can be written as µ = maxxT

l
Bxl=1 xT

l Axl, which is

the generalized eigenvalue problem of Eq. (1). So,
µ = xT

l Axl = λmax(B−1A) and xl = x̆.

Algorithm 1 requires the knowledge of ρ, which de-
termines sparsity. In a supervised learning setup like
FDA, ρ can be chosen by cross-validation whereas, in
an unsupervised setup like PCA/CCA, Algorithm 1
has to be solved for various ρ and the solution with
required cardinality is selected.

5. Sparse PCA by D.C. Programming

Based on the sparse generalized eigenvalue program
in Algorithm 1, we propose our sparse PCA algo-
rithm (DC-PCA) with B = I and A being the co-
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variance matrix. Usually, the sparse eigenvectors of
A are obtained by applying Algorithm 1 on the se-
quence of deflated matrices given by {A0 = A; Ai+1 =
Ai − (uT

i Aiui)uiu
T
i } with the same (or different) ρ

depending on the sparsity requirement, where ui is
the output of Algorithm 1 with A = Ai. This is ap-
propriate only when uT

i uj = 0, i 6= j. Otherwise,
there is a possibility that Ai ≺ 0, for some i. So,
one should be careful in computing the cumulative
variance explained by ui’s as

∑

i u
T
i Aiui. Instead,

the sequence of deflated matrices should be computed
as {A0 = A; Ai+1 = Ai − (vT

i Aivi)viv
T
i }, where

vi = ui − PSi−1
ui. PSi−1

ui represents the orthogo-
nal projection of ui onto the subspace, Si−1, spanned
by {v0,v1, . . . ,vi−1} with v0 = u0. The cumulative
variance is then calculated as

∑

i v
T
i Aivi.

The following proposition shows that for ρ = 0, DC-
PCA reduces to the power iteration algorithm.

Proposition 3. Let B = I, A � 0 and ρ = 0. Then
DC-PCA algorithm (Algorithm 1) is the power method
for eigenvalue computation.

Proof. From Proposition 2, xl+1 = Axl/||Axl||2 and
at xl+1 = xl, λmax(A) = xT

l Axl = ||Axl||2.
In the following, we compare our sparse PCA formu-
lation (DC-PCA) to SCoTLASS and SPCA.

5.1. Comparison to SCoTLASS

The SCoTLASS program given by maxx{xT Ax −
ρ||x||1 : ||x||22 = 1} is also non-convex because of con-
vex maximization. Using DCA, we get an algorithm
which is the same as Algorithm 1 except that Eq. (13)
is replaced by x̄∗ = arg maxx̄{xT

l Ax̄− ρ
2 ||x̄||1 : ||x̄||22 ≤

1} with xl+1 = x̄∗. Mainly, this differs from DC-
PCA in the multiplicative update. Let us assume that
(xl)i = 0 for some l. For DC-PCA, this ensures that
(xj)i = 0, ∀ j > l which is not guaranteed for SCoT-
LASS. Since (xj)i = 0, ∀ j > l, ||x ◦ xj ||22 = 1 con-
strains the points to the surface of a hyper-ellipsoid
that is degenerate in the ith dimension. The mul-
tiplicative update in DC-PCA ensures faster conver-
gence of an irrelevant feature to zero than that in
SCoTLASS, thus providing better sparsity. This is not
surprising as a better approximation to ||.||0 is used
in DC-PCA. SCoTLASS also differs from DC-PCA in
the sense that its sparse eigenvectors are orthonormal,
unlike in DC-PCA. When ρ = 0, like DC-PCA, SCoT-
LASS also reduces to the power iteration algorithm.

5.2. Comparison to SPCA

Zou et al., (2004, Theorem 1) derive PCA in a re-
gression framework where sparsity is introduced by

adding the ℓl penalty to the regression problem. We
consider their “direct sparse approximation” formula-
tion rather than the “self-contained” regression-type
criterion (see §3.1 and §3.2 in Zou et al. (2004)).
The corresponding optimization problem is given by
minx {||pi − Qx||22 + λ||x||22 + λ1||x||1} where Q =
UΛVT is the data matrix and pi = (UΛ)i is the
ith principal component. This can be treated in
the Bayesian setting as pi|x, σ2 ∼ G(Qx, σ2I) and
x|β2, γ ∼ G(0, β2I)

∏

i exp(−γ|xi|) where the prior
on x is a product distribution of circular Gaussian
and product of Laplacian densities. The parameters
λ and λ1 are related to σ2, β2 and γ. As aforemen-
tioned, our method can be interpreted as defining an
improper prior over x, which promotes sparsity. We
use p(x) ∝ ∏

i
1

|xi|
(instead of

∏

i exp(−γ|xi|)) as the

prior so that x|β2 ∼ G(0,2 I)p(x), resulting in

min
x

||pi − Qx||22 + λ||x||22 + λ1

∑

i

log |xi|. (14)

Zou et al., (2004, Theorem 1) show that with λ1 = 0,
the minimizer of Eq. (14) is a scaled version Vi. When
λ1 6= 0, the additional term promotes sparsity. Since
this problem is equivalent to Eq. (5), we claim that
DC-PCA provides sparser solutions than SPCA. It is
to be noted that SPCA is not extendable to other set-
tings like FDA/CCA whereas our formulation is more
general and does extend to other settings also.

6. Experiments & Results

In this section, we illustrate the effectiveness of the
proposed method (DC-PCA) in terms of sparsity and
scalability on different real-life datasets. Since SPCA4

and DSPCA5 have demonstrated improved perfor-
mance over simple thresholding and SCoTLASS, we
choose these methods as our baselines to compare
against the performance of our method. Also, based on
the discussion in §5.1, it should be clear that DC-PCA
performs better than SCoTLASS. Because of the non-
availability of a code setup for GSPCA, we are not able
to compare our results with it. The results show that
our method has better scalability and achieves more
sparsity than SPCA and DSPCA, while explaining as
much variance as possible.

6.1. Pit Props Data

The pit props dataset (Jeffers, 1967) has become a
standard benchmark example to test sparse PCA al-
gorithms. The first 6 principal components (PCs)

4LARS-based Elastic-net SPCA MATLAB toolbox
(Sjöstrand, 2005) was used to solve for SPCA.

5DSPCA software is available at http://www.prince
ton.edu/~aspremon/DSPCA.htm.
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Table 1. Loadings for first three principal components (PCs) of the pit props data. Original SPCA and DSPCA loadings
are taken from Zou et al. (2004) and d’Aspremont et al. (2005) respectively.

PC x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

1 -.477 -.476 0 0 .177 0 -.250 -.344 -.416 -.400 0 0 0
SPCA 2 0 0 .785 .620 0 0 0 -.021 0 0 0 .013 0

3 0 0 0 0 .640 .589 .492 0 0 0 0 0 -.015
1 -.560 -.583 0 0 0 0 -.263 -.099 -.371 -.362 0 0 0

DSPCA 2 0 0 .707 .707 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 -.793 -.610 0 0 0 0 0 .012
1 0.449 0.459 0 0 0 0 0.374 0.332 0.403 0.419 0 0 0

DC-PCA 2 0 0 0.707 0.707 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0.816 0.578 0 0 0 0 0 0
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Figure 1. Pit props: (a) cumulative variance (b) cumulative cardinality for first 6 sparse principal components (PCs) (c)
percentage of explained variance (PEV) vs. sparsity for the first PC (d) dependence of sparsity and PEV on ρ for the first
PC. DC-PCA∗ in (a) represents DC-PCA evaluated at SPCA’s sparsity pattern of (7, 4, 4, 1, 1, 1).

capture 87% of the total variance and so all these
other methods compare their explanatory power us-
ing 6 sparse PCs. Table 1 shows the first 3 PCs and
their loadings for SPCA, DSPCA and DC-PCA. SPCA
captures 75.8% of the variance with a cardinality pat-
tern of (7, 4, 4, 1, 1, 1) (total of 18 non-zero loadings)
while DSPCA captures 75.5% with a sparsity pattern
of (6, 2, 3, 1, 1, 1), totaling 14 non-zero loadings. We
used a sparsity pattern of (6, 2, 2, 1, 1, 1) with a to-
tal of only 13 non-zero loadings and capture 77.1% of
the total variance. In addition, when SPCA’s sparsity
pattern of (7, 4, 4, 1, 1, 1) is used, DC-PCA (shown as
DC-PCA∗ in Figure 1(a)) performs significantly bet-
ter than SPCA and DSPCA. Comparing the cumula-
tive variance and cumulative cardinality, Figure 1(a–
b) show that DC-PCA explains more variance with
fewer non-zero loadings than SPCA and DSPCA. We
restate here that one should be careful in computing
the cumulative variance when dealing with multiple
sparse PCs (see the discussion on matrix deflation in
§5). For the first PC, Figure 1(c) shows that DC-PCA
consistently explains more variance with better spar-
sity than SPCA and DSPCA. Figure 1(d) shows the
variation of sparsity and explained variance w.r.t. ρ
for the first PC. This plot summarizes the method for
setting ρ wherein the algorithm is run for various ρ.
The value of ρ that achieves the required sparsity is
chosen and its corresponding variance is calculated.

6.2. Colon Cancer Data

The colon cancer data (Alon et al., 1999) consists of 62
tissue samples (22 normal and 40 cancerous) with the
gene expression profiles of n = 2000 genes extracted
from DNA micro-array data. The high-dimensionality
of the dataset makes it a suitable candidate for study-
ing the performance of sparse PCA algorithms where
feature selection is needed to get interpretable results.
Its first 10 PCs explain 80% of the total variance. Due
to computational reasons, we consider only the first 5
PCs in our study, which explain 70% of the total vari-
ance. By comparing the cumulative variance and cu-
mulative cardinality for the first 5 PCs, Figure 2(a–b)
show that DC-PCA explains significantly more vari-
ance with fewer non-zero loadings than SPCA. For 8%
loss in the explained variance w.r.t. PCA (from 70%
to 62%), DC-PCA requires ∼ 40% fewer genes to suffi-
ciently reconstruct the first 5 PCs. Because of the poor
scalability of DSPCA for large matrix sizes (see §6.4),
the experiments on DSPCA could not be completed
in reasonable time. So the results do not include the
comparison to DSPCA.

6.3. Leukemia Data

Leukemia data (Golub et al., 1999) consists of a train-
ing set of 38 samples (27 ALL and 11 AML, two vari-
ants of leukemia) from bone marrow specimens and a
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Figure 2. Colon cancer: (a) cumulative variance (b) cumulative cardinality for first 5 sparse principal components (PC).
Leukemia: (c) percentage of variance explained vs. sparsity for the first PC. (d) CPU time vs. problem size for randomly
chosen problems. (a–c) show that DC-PCA explains more variance with fewer non-zero loadings than SPCA.

test set of 34 samples (20 ALL and 14 AML). This
dataset has been used widely in a classification set-
ting where the goal is to distinguish between two vari-
ants of leukemia. We chose this dataset because of
its large dimensionality. All samples have 7129 fea-
tures, corresponding to some normalized gene expres-
sion value extracted from the micro-array image. We
test the performance of DC-PCA and SPCA on this
high dimensional dataset. Again, for scalability rea-
sons, DSPCA is not considered for the performance
comparison. Figure 2(c) shows the comparative per-
formance (explained variance vs. sparsity) of DC-PCA
and SPCA for the first PC. In this case, too, DC-PCA
explains more variance (though marginal) with fewer
variables compared to SPCA. Though this dataset is
not as interesting as the colon cancer dataset because
the amount of variance explained by the first PC is just
15%, we used it to show that our algorithm is scalable
to high-dimensional datasets.

6.4. Computing Time vs. Problem Size

DC-PCA is a sequence of QCQPs with worst-case
complexity of O(mn3), which is the same as that of
SPCA as opposed to O(n5.5) of DSPCA. Here, m is
the number of iterations before convergence. To em-
pirically compute the running time complexity of these
methods, we ran6 these algorithms on randomly cho-
sen problems of size n ranging from 10 to 2000 for
5 different values of ρ and k (similar to the setup in
d’Aspremont et al., (2005, §6.4)). Figure 2(d) shows
the plot of average CPU time vs. n for these meth-
ods with the empirical complexity growing as O(np)
where p = 1.46 for DC-PCA, p = 1.91 for SPCA and
p = 3.92 for DSPCA. This shows that DC-PCA scales
much better to large-dimensional problems than SPCA
and DSPCA and has to be preferred over these meth-
ods as it also has better sparsity vs. explained variance
performance.

6The experiment was carried out on a Linux 3 GHz, 4
GB RAM workstation.

7. Conclusion & Future Work

We have proposed a sparse generalized eigenvalue al-
gorithm using d.c. programming, the special case of
which yields sparse PCA algorithm (DC-PCA). The
main advantages of this algorithm are improved spar-
sity and better scalability than SPCA and DSPCA.
Sparsity is improved by using a better approximation
to the cardinality constraint. We have experimen-
tally demonstrated on real-life data of varying dimen-
sionality that the proposed algorithm (DC-PCA) ex-
plains more variance with sparse features than SPCA
and DSPCA at much better computational speed (low
CPU time).

One of the drawbacks of both DC-PCA and SPCA is
the difficulty in setting the regularization parameter
to attain a given sparsity, which is not the case with
DSPCA wherein the sparsity requirement is explicitly
mentioned. But, both these methods, though non-
convex, have better scalability than the convex SDP
formulation of DSPCA.

In the future, we plan to investigate this paradigm for
canonical correlation analysis which has interesting ap-
plications in dictionary translation, semantic learning
of multimedia content, music annotation, etc. Also,
we would like to investigate path following techniques
to efficiently set the regularization parameter.

Appendix A. D.C. Programming

Let C be a convex set of R
n. A real valued function f :

C → R is called a d.c. on C , if there exist two convex
functions g, h : C → R such that f can be expressed
in the form f(x) = g(x) − h(x), x ∈ C . Optimization
problems of the form minx {f0(x) : x ∈ C , fi(x) ≤
0, i = 1, . . . ,m}, where fi = gi − hi, i = 0, . . . ,m, are
d.c. functions are called d.c. programs. Though there
exist global optimization approaches such as branch
and bound, cutting planes to solve d.c. programs, they
are not scalable to large-scale problems. A robust and
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Algorithm 2 D.C. Minimization Algorithm (DCA)

Require: g, h, δ
1: Choosex0 ∈ dom g arbitrarily
2: for l ∈ N do

3: select zl ∈ ∂h(xl) arbitrarily
4: selectxl+1 ∈ ∂g∗(zl) arbitrarily

5: if min
(

|(xl+1 − xl)i|,
∣

∣

∣

(xl+1−xl)i

(xl)i

∣

∣

∣

)

≤ δ, ∀ i
then

6: return xl+1

7: end if

8: end for

efficient algorithm (DCA) is proposed in Tao and An
(1998), which is a primal-dual subgradient method for
solving general (large-scale) d.c. programs. Here, we
skip details and directly present DCA. We refer the
interested reader to Tao and An (1998) for more details
on the theoretical guarantees of DCA and to Horst and
Thoai (1999) for an overview of d.c. programming.

For a lower semi-continuous, proper convex function
f : R

n → R ∪ {∞}, we use the following standard no-
tation (Rockafellar, 1970): domain of f , dom f = {x ∈
R

n : f(x) < ∞}, conjugate function of f , f∗(z) =
supx∈Rn{zT x − f(x)}, subdifferential of f , ∂f(z) =
{w ∈ R

n : f(x) ≥ f(z)+wT (x−z), ∀x ∈ R
n} for z ∈

R
n. For differentiable functions, ∂f(z) = {∇f(z)}. It

also holds that ∂f(x) = arg maxz∈Rn{xT z − f∗(z)},
∂f∗(z) = arg maxx∈Rn{zT x − f(x)}. The local con-
vergence of DCA algorithm (Algorithm 2) is proven
in Tao and An, (1998, Lemma 3.6, Theorem 3.7). In
case of non-global solutions, one may restart DCA with
a new initial point. However, Tao and An (1998) state
that the DCA often converges to a global solution.
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