
IDENTIFYING WORDS THAT ARE MUSICALLY MEANINGFUL

David Torres1, Douglas Turnbull1, Luke Barrington 2 Gert Lanckriet 2

Dept. of Computer Science and Engineering1

Dept. of Electrical and Computer Engineering2

University of California, San Diego

ABSTRACT

A musically meaningful vocabulary is one of the keystones
in building a computer audition system that can model the
semantics of audio content. If a word in the vocabulary is
inconsistently used by human annotators, or the word is
not clearly represented by the underlying acoustic repre-
sentation, the word can be considered asnoisyand should
be removed from the vocabulary to denoise the model-
ing process. This paper proposes an approach to con-
struct a vocabulary of predictive semantic concepts based
on sparse canonical component analysis(sparse CCA) .
Experimental results illustrate that, by identifying musi-
cally meaningful words, we can improve the performance
of a previously proposed computer audition system for
music annotation and retrieval.

1 INTRODUCTION

Over the past two years we have been developing a com-
puter audition system that can annotate songs with seman-
tically meaningful words and retrieve relevant songs based
on a text query. This system learns a joint probabilistic
model between a vocabulary of words and acoustic fea-
ture vectors using a heterogeneous data set of song and
song annotations. However, if a specific word is incon-
sistently used when annotating songs or is not represented
well by the acoustic features, the system will not be able
to model thisnoisyword well. In this paper, we explore
the problem ofvocabulary selectionfor semantic music
annotation and retrieval. We will consider two concepts,
human agreementandacoustic correlation, as indicators
for picking candidate words.

Previously, we collected semantic annotations of mu-
sic using various methods: text-mining song reviews [15],
conducting a human survey [16], and exploring the use of
a human computation game [17, 19]. In all cases, we are
forced to choose a vocabulary using ad-hoc methods. For
example, text-mining the song reviews resulted in a list
of over 1,000 candidate words which the authors manu-
ally pruned if there was a general consensus that a word
was not ‘musically-relevant’. To collect the survey and
game data, we built, a priori, a two-level hierarchical vo-
cabulary by first considering a set of high-level semantic
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categories (‘Instrumentation’, ‘Emotion’, ‘Vocal Charac-
teristic’, ‘Genre’) and then listing low-level words (‘Elec-
tric Guitar’, ‘Happy’, ‘Breathy’, ‘Bebop’) for each seman-
tic category. In both cases, a vocabulary required manual
construction and included somenoisywords that degraded
the performance of our computer audition system.

In this paper, we highlight two potential reasons why a
word causes problems for our system. The first is related
to the notion that aspects of music are subjective. That
is, two individual listeners will use different words to de-
scribe the same piece of music. For example, a pre-teen
girl might consider a Backstreet Boys song to be ‘touching
and powerful’ whereas a dj at an indie radio station may
consider it ‘abrasive and pathetic’. If we consider them
as one population, the annotations will be in conflict with
one another. To address this issue we introduce in Section
2 a measure ofhuman agreementto evaluate how consis-
tently our population uses a word to label a large set of
songs.

A second reason a word may be hard to model involves
the expressive power of our chosen audio feature represen-
tation. For example, if we are interested in words related
to long-term music structure (e.g., ‘12-bar blues’) and we
only represent the audio using short-term (< 1 sec) audio
feature vectors, we may be unable to model such concepts.
Another example is words that relate to a geographical
association (e.g., ‘British Invasion’, ‘Woodstock’) which
may have strong cultural roots, but are poorly represented
in the audio content.

Given an audio feature representation, we would like to
identify the words that are represented well by the audio
content before we try to model such words. To do this we
propose the use of a method based oncanonical correla-
tion analysis(CCA) to measureacoustic correlation.

CCA is a method of exploring dependencies across two
different, but related, vector spaces and has been used
in applications dealing with multi-language text analysis
[18], learning a semantic representations between images
and text [4], and localizing pixels which are correlated
with audio from a video stream [6]. Similar to how prin-
cipal component analysis (PCA) finds informative direc-
tions in one feature space by maximizing the variance of
projected data, CCA finds directions (projections of the
data) across multiple spaces that maximize correlation.

Given music data represented in both a semantic fea-
ture space and an acoustic feature space, we propose that



these directions of high correlation can be used to find
words that are strongly characterized by an audio repre-
sentation. We do so by imposing constraints on CCA that
explicitly turn it into a vocabulary selection mechanism.
This CCA variant is calledsparse CCA.

2 HUMAN AGREEMENT

Recently, we collected the Computer Audition Lab 500
(CAL500) data set [16]: 500 songs by 500 unique artists
each of which has been annotated according to a 173-word
vocabulary by a minimum of three individuals. Most of
the participants were paid, American, undergraduate stu-
dents and the testing was conducted in a computer labo-
ratory at UC San Diego. We purposely collected multiple
annotations for songs so that we could gauge how consis-
tently a population of college students label music.

Using this data set, we can calculate a statistic we refer
to ashuman agreementfor each word in our vocabulary.
The agreement of a word-song pair (w, s) is:

Aw,s =
#(positive associations)w,s

#( annotations)s
. (1)

For example, if 3 out of 4 students label Elvis Presley’s
‘Heartbreak Hotel’ as being a ‘blues’ songs then
A‘blues’, ‘heartbreak hotel’ = 0.75. We calculate the human
agreement for a word by averaging over all the songs in
which at least one subject has used the word to describe
the song. This can be written as

Aw =
∑

s Aw,s∑
s I[Aw,s > 0]

(2)

whereI is an indicator function that is 1 ifAw,s is greater
then zero, and 0 otherwise. That is, all word-song pairs
are valid except the word-song pair that nobody associates
with one another. We expect human agreement to be close
to 1 for more ‘objective’ words such as words associated
with instrumentation (‘cow bell’), and close to 0 for words
that are more ‘subjective’ such as those that related to song
usages (‘driving music’).

3 ACOUSTIC CORRELATION WITH CCA

Canonical Correlation Analysis, or CCA, is a method of
exploring dependencies between data which are represented
in two different, but related, vector spaces. For example,
consider a set of songs where each song is represented by
both asemantic annotation vectorand anaudio feature
vector. An annotation vector for a song is a real-valued (or
binary) vector where each element represents the strength
of association (e.g., Equation 1) between the song and a
word from our vocabulary. An audio feature vector is a
real-valued vector of statistics calculated from the digi-
tal audio signal. It is assumed that the two spaces share
some joint information which can be captured in the form
of correlations between the music data that live in these
spaces. CCA finds a one-dimensional projection of the

data in each space such that the correlations between the
projections is maximized.

More formally, consider two data matrices,A andS,
from two different feature spaces. The rows ofA con-
tain music data represented in the audio feature spaceA.
The corresponding rows ofS contain the music data repre-
sented in the semantic annotation spaceS (e.g., annotation
vectors). CCA seeks to optimize

max
wa∈A,ws∈S

w′
aA

′Sws (3)

s.t. w′
aA

′Awa = 1
w′

sS
′Sws = 1.

The objective in Problem 3 is the dot product between pro-
jections of data points. By itself, the objective function
is unbounded since we can scale thew terms arbitrarily.
Thus, we add the constraints to bound the length of thew
terms and ensure the result is proportional to a correlation
score.

By analyzing the Lagrangian dual function of Problem
3, we find that it is equivalent to a pair of maximum eigen-
value problems,

S−1
ss SsaS−1

aa Sasws = λ2ws (4)

S−1
aa SasS−1

ss Ssawa = λ2wa (5)

where

(
Saa Sas

Ssa Sss

)
=

(
A′A A′S
S′A S′S

)
andλ is the

maximum of Problem 3.
Note that the solution vectorws can be interpreted as a

linear combination of words, learned from the music data,
which are highly correlated with the audio representation.
In the next section we modify Problem 3 so that a subset
of words in our vocabulary is explicitly selected.

3.1 Sparse CCA

The solution vectors,wa andws, in Problem 3 can be
considered dense since most of the elements of each vec-
tor will be non-zero. In many applications it may be of
interest to limit the number of non-zero elements in thew
terms. This may aid in the interpretability of the result,
particularly when the coordinate axes of a vector space
have a direct meaning. For example, in bioinformatics ex-
periments, the input space may contain thousands of co-
ordinate axes corresponding to individual genes. We may
wish to perform sparse analysis if we suspect that some
phenomenon is dependent on a handful of these genes. In
this paper, we impose sparsity on the solution vectorws,
corresponding to the semantic space where each coordi-
nate axis describes a word. Our goal is to find a subset of
words in a vocabulary that are highly correlated to audio.
We expect that these words may be more objective than
others in the vocabulary since they are potentially charac-
terized by correlations with the underlying audio signal,
and thus, using these words may improve the performance
of semantic music analysis systems.

Sparsity has been well studied in the fields of statis-
tics and machine learning [22, 2, 14]. Imposing sparsity



is theoretically achieved by constraining the zero norm of
a solution vector||w||0, which is the number of non-zero
elements inw (this is technically an abuse of terminol-
ogy as the zero norm is not a true mathematical norm).
Constraining the zero-norm of a solution, because it is
a non-convex constraint, renders the problem intractable,
NP hard in fact. Instead, most sparse methods relax the
cardinality constraints by approximating the zero-norm with
a more mathematically tractable (i.e., convex) term such
as the one-norm,||w||1 =

∑
i |wi| [22] [2]. In this pa-

per we approximate||w||0 by
∑

i log(ε + |wi|), where
0 < ε � 1, avoids problems when one of thewi is zero.
This approximation has shown superior performance in
sparse methods literature and it can be shown that the
cardinality that results from this approximation is only
O( 1

log ε ) greater than the zero-norm constrained solution
[14] [20]. In practice we assume thatε is equal to ma-
chine precision and set it to zero.

We impose sparsity on the semantic spaceS by penal-
izing the cardinality of the solution vectorws in Eq. 4.
This is equivalent to solving the problem

max
ws∈S

S−1
ss SsaS−1

aa Sasws − ρs

∑
i

log |ws,i| (6)

s.t. w′
sws = 1

If the log term in the objective is removed, the problem
is simply the variational characterization of the eigenvalue
problem in Eq. 4. The addition of the log term penal-
izes the cardinality of the solution vector if it becomes too
high. ρs mitigates how harsh that penalty is, so by setting
ρs one can control the sparsity of the solution.

The non-zero elements of the sparse solution vectorws

can be interpreted as those words which have a high cor-
relation with the audio representation. Thus, in the exper-
iments that follow, setting values ofρs and solving Prob-
lem 6 reduces to a vocabulary selection technique.

Problem 6 is still difficult to solve because it requires
maximizinga convex objective. In other words, the prob-
lem does not have a guaranteed global maximum. How-
ever local solutions can be found by gradient descent or,
as is done in our experiments, by solving a sequence of
linear approximations [14].

4 REPRESENTING AUDIO AND SEMANTIC
DATA

In this section we describe the audio and semantic rep-
resentations, as well as describe the CAL500 [16] and
Web2131 [15] annotated music corpora that are used in
our experiments. In both cases, the semantic information
will be represented using a single annotation vectors with
dimension equal to the size of the vocabulary. The au-
dio content will be represented as multiple feature vectors
{a1, ...,aT }, where T depends on the length of the song.

The construction of the matricesA andS to run sparse
CCA follows: Each feature vector in the music corpus is
associated with the label for its song. For example, for

a given song, we duplicate its annotation vectors for a
total of T times so that the song-label pair may be repre-
sented as{(s,a1), ..., (s,aT )}. To constructA we stack
the feature vectors for all songs in the corpus into one ma-
trix. S is constructed by stacking all the corresponding
annotation vectors into one matrix. If each song has ap-
proximately 600 feature vectors and we have 500 hundred
songs, then bothA andS will have about 30,000 rows.

4.1 Audio Representation

Each song is represented as abag-of-feature-vectors: we
extract an unordered set of feature vectors for every song,
by extracting one feature vector for each short-time seg-
ment of audio data. Specifically, we compute dynamic
Mel-frequency cepstral coefficients (dMFCC) from each
half-overlapping, medium-time (∼743 msec) segment of
audio content [9].

Mel-frequency cepstral coefficients (MFCC) describe
the spectral shape of a short-time audio frame in a con-
cise and perceptually meaningful way and are popular fea-
tures for speech recognition and music classification (e.g.,
[11, 7, 13]). We calculate 13 MFCC coefficients for each
short-time (23 msec) frame of audio. For each of the 13
MFCCs, we take a discrete Fourier transform (DFT) over
the time series of 64 frames, normalize by the DC value
(to remove the effect of volume) and summarize the re-
sulting spectrum by integrating across 4 modulation fre-
quency bands: (unnormalized) DC, 1-2Hz, 3-15Hz and
20-43Hz. Thus, we create a 52-dimensional features vec-
tor (4 features for each of the 13 MFCCs) for every 3/4
segment of audio content. For a five minute song, this
results in about 800 52-dimensional feature vectors.

We have also explored a number of alternative feature
representations, These include auditory filterbank tempo-
ral envelope [9], MFCCs (with and without instantaneous
derivatives) [16], chroma features [3], and fluctuation pat-
terns [10]. For our experiments we chose a DMFCC rep-
resentation since it is compact compared with raw MFCC
feature representations and shows good performance on
the task of semantic music annotation and retrieval com-
pared with these other representations.

4.2 Semantic Representation

The CAL500 is an annotated music corpus of 500 west-
ern popular songs by 500 unique artists. Each song has
been annotated by a minimum of 3 individuals using a vo-
cabulary of 174 words. We paid 66 undergraduate music
students to annotate our music corpus with semantic con-
cepts. We collected a set of semantic labels created specif-
ically for a music annotation task. We considered 135
musically-relevant concepts spanning six semantic cate-
gories: 29 instruments were annotated as present in the
song or not; 22 vocal characteristics were annotated as
relevant to the singer or not; 36 genres, a subset of the
Codaich genre list [8], were annotated as relevant to the
song or not; 18 emotions, found by Skowronek et al. [12]
to be both important and easy to identify, were rated on



Top 3 words by semantic category
Agreement Acoustic Correlation

overall male lead vocals, drum set, female lead vocals rapping, at a party, hip-hop/rap
emotion not angry/agressive, not weird, not tender/soft arousing/awakening, exciting/thrilling, sad
genre hip-hop/rap, electronica, world hip-hop/rap, electronica, funk

instrument male lead vocals, drum set, female lead vocals drum machine, samples, synthesizer
general electric texture, not danceable, high energy heavy beat, very danceable, synthesized texture
usage driving, at a party, going to sleep at a party, exercising, getting ready to go out
vocals rapping, emotional, strong rapping, strong, altered with effects

Bottom 3 words by semantic category
Agreement Acoustic Correlation

overall at work, with the family, waking up not weird, not arousing, not angry/agressive
emotion not powerful/strong, not emotional, weird not weird, not arousing, not angry/agressive
genre contemporary blues, roots rock, alternative folk classic rock, bebop, alternative folk

instrument trombone, tamborine, organ female lead vocals, drum set, acoustic guitar
general changing energy level, minor key tonality, low

song quality
constant energy level, changing energy level, not
catchy

usage at work, with the family, waking up going to sleep, cleaning the house, at work
vocals falsetto, spoken, monotone high pitches, falsetto, emotional

Table 1. Top and bottom 3 words by semantic category as calculated by agreement and acoustic correlation.

a scale from one to three (e.g., ”not happy”, ”neutral”,
”happy”); 15 song concepts describing the acoustic qual-
ities of the song, artist and recording (e.g., tempo, en-
ergy, sound quality); and 15 usage terms from [5], (e.g.,
“I would listen to this song whiledriving, sleeping, etc.”).
The 135 concepts are converted to the 174-word vocabu-
lary by first mapping bi-polar concepts to multiple word
labels (‘Energy Level’ maps to ‘low energy’ and ‘high en-
ergy’). Then we prune all words that are represented in
five or fewer songs to remove under-represented words.
Lastly, we construct a real-valued 174-dimensional anno-
tation vector by averaging the label frequencies of the in-
dividual annotators. Details of the summarization process
can be found in [16]. In general, each element in the an-
notation vector contains a real-valued scalar indicating the
strength of association.

The Web2131 is an annotated collection of 2131 songs
and accompanying expert song reviews mined from a web-
accessible music database1 [15]. Exactly 363 songs from
Web2131 overlap with the CAL500 songs. The vocab-
ulary consists of 317 words that were hand picked from
a list of the common words found in the corpus of song
reviews. Common stop words are removed and the re-
sulting words are preprocesses with a custom stemming
algorithm. We represent a song review as a binary 317-
dimensional annotation vector. The element of a vector
is 1 if the corresponding word appears in the song review
and 0 otherwise.

5 EXPERIMENTS

Both human agreement and acoustic correlation may be
used to discover words that are musically meaningful and

1 AMG All Music Guide www.allmusic.com

Human Agr. Acoustic Cor.

emotion 53.5 (26.7) emotion 127.9 (54.9)
instrument 53.9 (39.5) vocals 146.2 (50.0)
vocals 88.2 (40.0) instrument 154.5 (39.9)
genre 118.6 (42.4) genre 156.7 (41.2)
usage 152.3 (21.9) usage 162.5 (37.9)

Table 2. Average rank of words in a semantic category
when ranked by human agreement and acoustic correla-
tion: Columns are sorted downward in increasing average
rank. The average rank of the category and std. dev. are
shown (lower is better). Note that the order of the cate-
gories closely match across both columns.

useful in the context of semantic music annotation and re-
trieval. In this section, we conduct three experiments to
highlight potential uses.

5.1 Qualitative Analysis

Table 2 shows the average rank of words in a semantic cat-
egory when words are ranked by human agreement and
acoustic correlation. For human agreement, words are
ranked by their agreement score. For acoustic correla-
tion, words are ranked by how long they are kept by sparse
CCA as the vocabulary size is reduced. This experiment
was run on the CAL500 data set.

A good rank in the human agreement metric suggests
that a word is less subjective. This is true by definition
since a good human agreement score means that people
used that word consistently to describe music. Not sur-
prisingly, we found that more objective categories such as
instrumentation are highly ranked on this list and subjec-
tive categories such as usage are ranked at the bottom.



vocab.sz. 488 249 203 149 103 50

# CAL500 words 173 118 101 85 65 39
# Web2131 words 315 131 102 64 38 11

%Web2131 .64 .52 .50 .42 .36 .22

Table 3. The fraction of noisy web-mined words in a vo-
cabulary as vocabulary size is reduced: As the size shrinks
sparse CCA prunes noisy words and the web-mined words
are eliminated over higher quality CAL500 words.

Interestingly, the ranks of semantic categories for the
acoustic correlation metric matched closely with human
agreement. This indicates that acoustic correlation may be
honing in on objective words too. This could be explained
if acoustic correlation picks up on the same structure in
the audio that is being used by humans to make semantic
judgements.

For a closer inspection at “musically relevant” words
given by our methods, Table 1 shows the top 3 and bottom
3 ranked words for all semantic categories.

5.2 Vocabulary Pruning using Sparse CCA

Sparse CCA can be used to perform vocabulary selection
where the goal is to prune noisy words from a large vocab-
ulary. To test this hypothesis we combined the vocabular-
ies from the CAL500 and Web2131 data sets and consider
the subset of 363 songs that are found in both data sets.

Based on our own informal user study, we found that
the Web2131 annotations are noisy as compared to the
CAL500 annotations. We showed subjects 10 words from
each data set and asked them which set of words were rel-
evant to a song. The Web2131 annotations were not much
better than selecting words randomly to from the vocabu-
lary, whereas CAL500 words were mostly considered rel-
evant.

Because Web2131 was found to be noisier than CAL500,
we expect sparse CCA to filter out more of the Web2131
words. That is, given progressively smaller vocabulary
sizes, Web2131 should comprise a progressively smaller
proportion of the vocabulary.

Table 3 shows the results of this experiment. The first
column of data reflects the vocabulary at full size. The vo-
cabulary size is 488 and the Web2131 vocabulary initially
out numbers the CAL500 words nearly two to one. Sub-
sequent columns show the state of the vocabulary when
vocabulary size is reduced from 203 words down to 50
words. Notice that the percentage of the Web2131 words
that comprise a vocabulary does, in fact, decrease. Noisy
words are being removed. If sparse CCA had no pref-
erence for either Web2131 or CAL500 we would see a
constant proportion in Table 3.

5.3 Vocabulary Selection for Music Retrieval

Human agreement and acoustic relevance can also be used
to prune noisy words from a vocabulary in order to im-
prove the performance of semantic music analysis sys-

Figure 1. Comparison of vocabulary selection techniques:
We compare vocabulary selection using human agree-
ment, acoustic correlation, and a random baseline, as it
effects retrieval performance.

tems. If a word is not well represented by the underlying
acoustic and semantic representation, then attempting to
model such a word will be fruitless.

In previous work, we have built a music retrieval sys-
tem that can rank-order songs for a given word based on
the audio content [16]. At a high level, this system builds
Gaussian mixture models of audio feature vectors for songs
associated with a given word. These mixtures can then be
applied to the task of music retrieval.

One useful evaluation metric for this task is the area
under the ROC (AROC) curve. (A ROC curve is a plot of
the true positive rate as a function of the false positive rate
as we move down a ranked list of songs.) For each word,
the AROC ranges between 0.5 for a random ranking and
1.0 for a perfect ranking. Average AROC is found by av-
eraging AROC over all words in the vocabulary. Once a
specific vocabulary is set, we train our supervised model
with a training set of 450 of the 500 test songs from the
CAL500 data set. Then we calculate average AROC per-
formance using the 50 songs that were not used during
training. The average AROC scores, as a function of vary-
ing vocabulary size, are shown in Figure 1.

We find that pruning a vocabulary both based on human
agreement and acoustic correlation improve the retrieval
performance of our system. The performance of acous-
tic correlation is markedly superior to a baseline method
in which we randomly select words to be in a vocabulary.
Based on experiment 5.2 these methods seem to remove
noisy words which are difficult to model, and thus im-
prove system performance.

6 DISCUSSION

We have presented human agreement and acoustic corre-
lation as metrics by which we can automatically, and in
an unsupervised fashion, construct a musically meaning-



ful vocabulary prior to building semantic models. Our re-
sults indicate that vocabulary selection via these metrics
remove noisy words that are difficult to model and lead
to improved performance of our semantic music analy-
sis systems. In the absence of human labeled data where
human agreement cannot be calculated, acoustic correla-
tion using sparse CCA provides a principled approach for
pruning noisy words as is shown in Section 5.2.

Whitman and Ellis have previously looked at vocabu-
lary selection by training binary classifiers (e.g., Support
Vector Machines) on a heterogeneous data set of web-
documents related to artists and the audio content pro-
duced by these artists [21]. By evaluating the performance
of each ‘word’ classifier, they are able to rank order words
for the purpose of vocabulary selection. This idea is con-
ceptually similar to rank ordering words by average AROC,
as was shown in Section 5.3, in that both evaluate a vocab-
ulary a posteriori. i.e., after using a supervised learning
framework. Moreover, such analysis evaluates the rele-
vance of every word independent of every other word.

In future research, we will investigate the impact of us-
ing a musically meaningful vocabulary for assessing song
similarity through semantic distance. We are interested in
developing a query-by-semantic-example system [1] for
music which retrieves similar songs by first representing
them in the semantic space and then rank-ordering them
based on a distance metric in that semantic space. We ex-
pect that having a compact semantic representation, which
can be found using sparse CCA, we will be able to im-
prove retrieval performance.We also plan to explore the
possibility of extracting meaningful semantic concepts from
web-based documents through acoustic correlation.
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